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Abstract. Monte Carlo numerical simulations of the percolation of sticks with random 
orientations on a cubic lattice are reported. Finite size scaling and the position space 
renormalisation group are used. As the length of the sticks is increased i t  is found that 
the critical probability decreases whereas the correlation length exponent remains, within 
experimental errors, the same as in classical 3D percolation. Comparison with previous 
experimental and numerical results on related systems leads to the emphasis of the 
importance of the excluded-volume condition. 

1. Introduction 

The percolation problem has been much studied on theoretical, numerical and experi- 
mental grounds (for extensive reviews see Stauffer 1979, Essam 1980, Adler et a1 
1982). Various kinds of problems can be defined according to the connection laws 
and occupation rules for the basic elements (sites or bonds); in the usual random 
percolation these elements are each occupied with a probability p independent of the 
other elements; in ‘correlated percolation’ this probability depends on the occupancy 
of the surrounding elements and in ‘anisotropic percolation’ on the spatial orientation 
of the bonds. Moreover, a distinction must be made between ‘discrete percolation’ 
in which the basic elements are placed on a lattice and ‘continuous percolation’ in 
which they are allowed to take any position compatible with the considered problem. 
Among the most investigated topics are the determination of the percolation threshold 
p c  and the critical exponents, especially the ‘correlation length exponent’ Y, and, when 
a conductance is associated with the bonds, the ‘conductivity exponent’ t. 

These theories have also been shown to be relevant for describing the conductivity 
of binary mixtures of conducting and insulating materials (Kirkpatrick 1979, Deutscher 
1981). The usual random percolation applies to heterogeneous materials constituted 
with spherical, monodisperse, isotropic conducting particles, either randomly dis- 
tributed in a continuous insulating matrix (Fug er a1 1978) or mixed with identical 
insulating particles (Ottavi er ul 1978). 

Some interest has been focused recently on the conductivity of random media in 
which the conducting particles are non-spherical and/or have anisotropic conductivity. 
We can quote a theoretical study (Shklovskii 1978) and model experiments (Smith 
and Lobb 1979, Blanc et a1 1980). All these studies are limited to 2~ systems and 
consider only the case of oriented symmetry or principal axis of the particles. At least 
over a domain of concentration in conducting material, such a medium must exhibit 
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an anisotropic macroscopic conductivity. Anisotropic percolation (Redner and Stanley 
1979) has been shown (Blanc et a1 1980, Lobb et a1 1981) to apply to such situations. 

The large development of fibrous composite materials arouses interest about the 
percolative properties of random assemblies of elongated elements characterised by 
large aspect ratios (the ratio of the length to the transversal size). Carmona et a1 
(1980, 198 1) have studied experimentally the electrical properties of short conducting 
carbon fibres embedded in an insulating resin and have proposed some theoretical 
interpretations of the fibre length dependence of the conductivity threshold. The 
purpose of the present work is to perform a Monte Carlo simulation of a 3~ random 
dispersion of elongated elements with various aspect ratios and to compare the results 
on the one hand with the former experimental and theoretical results and on the other 
hand with the different 2~ simulation approach of Pike and Seager (1974). 

Two different problems are to be distinguished. 
(1) The sticks or rods are dispersed with random position and orientation. The 

medium is always macroscopically isotropic and the problem is only a matter of a 
certain type of ‘correlated percolation’, due to both the shape of the sticks and the 
excluded-volume effects. 

(2) The sticks or rods are partially or completely oriented parallel to a fixed 
direction or a fixed plane. The medium becomes anisotropic on a macroscopic scale 
and we are then facing an ‘anisotropic percolation’ in addition to other possible 
correlations. 

This paper is only concerned with the first of these problems. In § 2 we define 
the model and describe briefly the methods that are used. In 8 3, we give the results 
of the simulation and discuss their validity. In §4, these results are compared with 
experiments and previous theory, and we then propose some explanation of the 
observed discrepancies and outline future possible developments. 

2. Simulation model and methods 

(a  ) Representation 

We use a 3~ simple cubic lattice of sites with lattice spacing unity. Each conducting 
fibre is represented by a group of n adjacent occupied sites, lined up along one of 
the three principal axes of the lattice. Two different fibres are not allowed to have a 
common site, so that steric exclusion effects are introduced. The conduction rule is 
the same as for usual random percolation: two sites are said to be connected if they 
are nearest neighbours (each site has six nearest neighbours in the cubic lattice). If 
one imagines that each elementary cube of side unity centred on an occupied site is 
filled with conducting material, the fibre is clearly a parallelepipedic conducting 
element of length n,  with transversal dimensions unity, so that the aspect ratio is n .  
Conduction occurs between two different sticks when they touch along a non-zero 
surface. Figure 1 gives a 2~ example of the representation in the case n = 4 :  the 
current goes between 1, 2 and 3 but not between 1 and 4. The density of the medium 
is equal to the proportion of occupied sites p .  

(6 )  Sample generation 

For each sample, cubic shaped with linear size 6, the sticks are introduced at random, 
starting with an empty lattice and giving an equal probability to all positions still 
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Figure 1. Two-dimensional scheme of the generation of sticks in the case n = 4 :  
, the square lattice; 0, the occupied sites; -, the limits of the simulated 

sticks. According to the connection criterion (see text) stick 1 is connected to sticks 2 
and 3 and not connected to stick 4. 

available, that is compatible with the steric exclusion rule. Thus a new stick is rejected 
if at least one of the sites belonging to it would overlap a site already occupied. In 
order to avoid wall effects in this correlated problem, periodic boundary conditions 
are used, Several rules equivalent in  the limit of infinite samples can be chosen to 
define the infinite cluster (Reynolds et a1 1980). We choose the following one: the 
sample is said to percolate if it is spanned by a conducting path in a given direction 
(say ‘vertical’) and, because of the periodic boundary conditions, if the final occupied 
site is identical to the initial one. Note that, due to the spatial correlations and 
exclusion-volume effects, the complete sample must be kept in memory. A process 
like the one used by Hoshen and Kopelman (1976) cannot be used to reduce the 
computational requirements. 

For each sample, the building process is stopped when percolation first occurs and 
the corresponding density is registered. In practice this point is not tested for each 
added stick but with a predetermined precision by means of a bipartition process. 
Since the sample is finite, this value is not exactly equal to p c ,  but distributed according 
to a probability law L(b ,p)dp  to find the percolation point between p and p+dp .  
L(b,  p )  exhibits a maximum for p = pmax which sharpens and approaches p c  for very 
large samples (Reynolds et a1 1980). 

By generating many different samples, in practice 2000 to 15 000, of a given linear 
size 6, one gets an experimental distribution L ( 6 , p ) .  The critical behaviour of the 
infinite lattice is determined by convenient extrapolation of the results obtained on 
samples of increasing size according to the following methods. 

(e) Extrapolation procedure 

The two methods employed for determining p c  and the correlation length exponents 
v are finite size scaling (FSS) and position space renormalisation group (PSRG). 

FSS: When b is not too small, L(b, p )  can be approximated, at least in the vicinity of 
the maximum, by a Gaussian and the mean value ( p )  by pmax. Then, following the 
scaling theory of Levinshtein et a1 (19751, ( p )  is expected to approach p c  according 
to the relation 
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The same proportionality law holds for the width w of the distribution: 
w -b-”’. 

For a Gaussian it becomes 

L“,,, - bl/‘ (2) 

where Lzax is the maximum of the distribution. 
PSRG: On the other hand, the probability for a cell of size b and density p to involve 
an infinite cluster is given by 

R (b, p )  = l p L ( b ,  P’) d i .  
0 

Reynolds er a1 (1978) and Reynolds eta1 (1980) have shown that the recursion relation 
p ’  = R (6,  p )  defines a renormalisation group transformation which has a fixed point 
p * ,  defined by p *  = R (6,  p * ) .  p *  depends on b and approaches p c  when b -+ CO according 
to the relation 

lp*(b)  - p c /  -b-””. (3) 

p * ( b )  may be calculated exactly in the case of very small values of b and numerically 
otherwise. Moreover, the eigenvalue of the transformation is given by the slope A b  

of R(b ,p)  a t p = p *  

A b  =(dR(b, p)/dp)p=p*=L(b, p * ) .  

On the basis of standard renormalisation arguments it can be inferred that 

(or l / log b + 0). Y b  = log Ab/log b + y = 1 / v  when b + 0;) (4) 

In  recent articles, Tsallis (1982) and Family and Reynolds (1982) have shown, in 
particular cases, that a linear dependence of the form Y b  - l/log b is asymptotically 
exact in the large b limit. 

Both relations (1) (FSS) and (3) (PSRG) can be used to extrapolate the results to 
infinite samples. If 6 is large enough to approach the asymptotic regime a plot of 

against ( p )  (resp p * )  is a straight line, the intercept of which with the ( p )  axis 
(resp p *  axis) being p c .  Due to uncertainties v cannot be determined in this way with 
good accuracy; but an accurate determination of p c  can be achieved by using an 
estimated value of v. In two dimensions, Reynolds et a1 (1980) have shown that the 
resulting p c  value is not very sensitive to small errors in v. 

v can be better determined by a similar extrapolation of Y b  according to (4). In 
two dimensions an accurate determination of v has been done in such a way by 
Eschbach et a1 (1981) who showed that the result depends slightly on the extrapolation 
procedure and that the residual curvature cannot be ignored. In three dimensions, 
the more accurate value of v has been obtained by Heermann and Stauffer (1981) 
using FSS. 

In order to obtain good determinations of the pc  and evaluations of v we use 
simultaneously FSS and PSRG. We describe here the procedure in the case of the usual 
random site percolation on a cubic lattice (n = 1). The same one is used for n > 1, 
but will not be repeated in the sequel. The experimental distribution L(b,p),  for b 
sizes ranging between 4 and 75, was determined on a Digital VAX 11/780 computer 
as described above, with the number of trials going from 10000 for the smallest 

b-’/W 
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samples to 2000 for the largest ones. In order to save time and increase precision 
close to the maximum, the search was limited to the central peak of L ( b ,  p ) ,  ignoring 
the wings, and the former was fitted to a Gaussian (figure 2 ( a ) ) .  Grouping several 
points smoothes the fluctuations in the histogram but does not give significant differen- 
ces for the pmax values. The best compromise has been retained finally for pmax. The 
experimental histogram L ( b ,  p )  is integrated in order to get R (b, p )  and the point 
p *  = R (6, p * )  calculated for each value of b (figure 2(b) ) .  The results for pmax and p *  
(without uncertainties) are displayed in the first column of table 1. The actual number 
of trials in each case is given in parentheses. 

160 

120 

- 
4 
5 
4 

80 

40 

0 
0.26 0.28 0.30 0.32 0.34 0 

P 

I 
6 

0.8 

0.6 - 
9 
e -. 0.4 
9 

0.2 

0 
0.26 0 28 0.30 0.32 0 34 0.36 

P 

Figure 2. Experimental results in  the case n = 1 (isotropic case). ( a )  Experimental 
histogram of L ( 6 ,  p )  for 6 ranging between 4 and 75.  Full curves are fits to a Gaussian 
in a restricted range of p values. (6) Smoothed R(6,  p )  curves for the different 6 values 
as calculated from the data of ( a  1. The intersections with p ’  = p give the fixed points p * ( 6 ) .  
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Table 1. Monte Carlo results n ranging between 1 and 15, for various sample sizes b 
ranging between 4 and 75. In each cell the upper figure is for ( p ) ,  the lower for p * ;  the 
figure in parentheses is the number of samples. The row b =Q) gives the extrapolated 
percolation threshold p c .  The row U gives the values of the correlation length exponent 
as obtained using FSS and relation (2) of text. The last row gives the estimated value v, 
of Y for n = 1, 5 and 10 using the 'intersection' criterion (FSS and PSRG). 

2 3 5 8 10 15 

4 

5 

10 

20 

30 

40 

45 

50 

60 

0.3877 
0.3515 
( 10 000) 
0.3651 
0.3320 
(10 000) 
0.3348 
0.3205 
(1 5 000) 
0.3228 
0.3159 
(15 000) 
0.3189 
0.3137 
(15 000) 
0.3168 
0.3134 
(7500) 
0.3163 
0.3132 
(7500) 
0.3157 
0.3131 
~ 1 0 0 0 0 )  

0.3142 
75 0.3126 

(2000) 
a: 0.3119 
(extrapolated) *0.0005 

0.875 
r0.030 v 

"e 0.85 
(estimated) k0.05 

0.2841 
0.2610 
(10 000) 
0.2695 
0.2585 
(5000) 
0.2649 
0.2552 
(5000) 

0.2613 
0.2573 
(5000) 

0.2598 
0.2575 
(2000) 
0.2572 

i0.0005 
0.88 

i0.04 

0.2419 
0.2115 
(10000) 
0.2259 
0.2115 
(lO000) 
0.2212 
0.2124 
(5000) 
0.2188 
0.2124 
(5000) 

0.2174 
0.2123 
(10000) 

0.2158 
0.2125 
(2000) 
0.2128 

~t0.0005 
0.885 

*0.020 

0.1698 
0.1503 
(5000) 
0.1646 
0.1524 
(5000) 
0.1620 
0.1529 
(5000) 

0.1606 
0.1538 
(10 000) 

0.1586 
0.1541 
(2000) 
0.1554 

+0.0003 
0.925 

*0.050 
0.87 

io .05 

0.1180 
0.1016 
(5000) 

0.1142 
0.1056 
(5000) 

0.1120 
0.1065 
(2000) 
0.1084 

*:0.0006 

(0.88) 

0.0994 
0.0816 
(5000) 

0.0954 
0.0856 
(5000) 

0.0936 
0.0873 
(2000) 
0.0904 

*0.0003 

(0.86) 

0.85 
rt0.05 

0.0665 
0.0564 
(5000) 
0.8436 
0.0574 
(5000) 
0.0656 
0.0588 
(5000) 
0.0635 

io .00  10 

(0.87) 

Now, we assume that ( p )  = pmax or, strictly speaking, that ( p )  follows the same 
scaling laws as pmax and use simultaneously (1) and (3) with a trial value vt. If vt is 
the exact value of v, the two extrapolated straight lines for b - ' / v ,  as a function of ( p )  
or ( p * )  must cross exactly on the p axis at the point p = pc .  

The use of this criterion with several trial values of vt leads to a more accurate 
determination of p c  and to an estimated value v, of v. A better determination of v 
can be performed by means of FSS and relation (Z), as a log-log plot of Lzax against 
b must approach a straight line for large values of 6, with slope l/v. 
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100 

50 

O E  4 

10 

5 -  

Figures 3(a)  and 3(b )  show the extrapolation using both methods when n = 1 (pure 
random site percolation). The first procedure (figure 3 ( a ) )  gives the value pc= 
0.31 19 f 0.0005 and the estimated correlation length exponent v, = 0.85 10.05. This 
value of pc is in good agreement with the value 0.31 17 1 0.0003 obtained by Heermann 
and Stauffer (1981) with FSS procedure and sample sizes up to b = 100. The second 
extrapolation procedure (figure 3(b)) provides the more accurate value v = 
0.875*0.030 in better agreement with the value ?I = 0.8910.01 of Heermann and 
Stauffer (1981) than with the previous one v = 0.845*0.015 obtained by Kirkpatrick 
(1979). 

. Ib) 

7 

- 

7 

0 310 0 315 0 320 0 325 
P 

1- 
1 5 10 50 100 

b 

Figure 3. Extrapolation procedures for obtaining p c  and in the case n = 1: ( a )  Fits of 
against ( p )  and p *  to straight lines for three trial values of vl .  The vertical scale is 

arbitrary and the sets of data for vt = 0.90 and vl = 0.80 have been translated along the 
p axis by 0.002 for clarity. Notice that only the lines for ut  = 0.85 intersect on the p axis, 
+, u,=0.90: 0, vt -0 .85;  0, u,=0.80. ( b )  Log-log plot of L2ax against b. A linear 
variation is made evident for large values of b. From the slope of the straight line the 
value U = 0.875 k0.03 is obtained. 

&I;"' 

For increasing values of n, p *  is shifted into the wings of the distribution L(b, p )  
where the Gaussian approximation is expected to break down. Then the second 
extrapolation procedure using FSS and relation (2) becomes less accurate. Fortunately, 
at the same time, the criterion of the first procedure becomes more sensitive to slight 
changes in vt,  since for n > 2, the two straight lines of b-""' against p* and pmax have 
slopes of opposite signs. 

3. Results 

The former analysis has been performed for increasing values of n up to 15. It must 
be noticed that for so large an aspect ratio the linear size 75 of the largest sample is 
only five times the length of the element. So the uncertainties and fluctuations in the 
experimental values of L(b, p )  increase with n. Nevertheless, the determination of p c  
remains rather accurate up to these values since the asymptotic behaviour seems to 
be approached in a faster way. 
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As an example, the extrapolation curves using the ‘intersection’ criterion are given 
in figure 4 for n = 5 .  The complete numerical results ( p ) ,  ( p * )  and the extrapolated 
values of p c  are summarised in table 1 for all n and b values. We have represented 
p c  as a function of n with logarithmic scales in figure 5 .  p,(n) does not approach a 
proportionality law in n-2  as could have been expected from the work of Carmona 
eta1 (1981) but rather approximately as asymptotic law in n-’. Nevertheless, although 
according to the curvature n-’ seems to be definitively ruled out, larger aspect ratios 
would be necessary to ascertain the n-* behaviour. 

The exponent v has been determined in order to evidence eventual deviations 
to the correlation length exponent of the pure 3~ random-site problem. The reliability 
of such determination becomes poor at large values of n because of the small number 
of experimental points and limited range of b values. In addition, a careful evaluation 

0 150 0 155 0 160 0 165 0 170 
P 

Figure 4. The same as in  figure 3 ( a )  in the case n = 5 ;  five trial values for vt  have been 
used. Ordinate origins have been translated for clarity. Notice that the intersection of 
lines occurs on the p axis for three values of vt :  the values of vt are denoted by 0 (0.801, 
0 (0.85), (0.87). + (0.90), X (0.92) 

P< 

0 1  

0 0 5 -  

1 5 10 
n 

Figure 5. Log-log plot of the variation of percolation threshold p c  with sticks length n. 
Broken lines give, for comparison, n -  ’ and n -‘ dependences. 
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of v, using the ‘intersection’ criterion (FSS and PSRG) has been done for the two values 
n = 5 and n = 10. These values have been chosen since, on the one hand, we expect 
that eventual deviations will be greater the larger n is, but on the other hand, when 
n is too large there is too small a set of reliable experimental points (those for which 
the cell size to stick length ratio is large enough). All these results are reported in 
table 1. 

Values of v exactly equal to 1 or 0.5 (the ‘classical’ exponent) can be ruled out. 
Moreover, in the limits of the accuracy, all the systems studied seem to belong to the 
same universality class as the pure site percolation problem for which we found 
U = 0.875 f 0.030. 

4. Discussion 

Our two main results are thus: 
(i) p , ( n )  follows an asymptotic law close to l / n  at large n. 
(ii) The universality class, defined through the v exponent, seems to be the same 

as for usual 3~ random percolation. 
These results contradict the prediction by Carmona et a1 (1980) p c  - 1-2 on the 

basis of dimensional arguments for very large aspect ratios 1 of fibres stating that the 
probability of contact between two sticks depends, for a given distance between their 
centres of symmetry, only on their lengths. In a ZD system, the same arguments give 
p F - I - ’ ,  a result also obtained by Pike and Seager (1974) in a 2D Monte Carlo 
simulation of sticks of length I, without any thickness, centred on the nodes of a square 
lattice, and taking random orientations. Moreover Carmona et a1 (1981) have found 
experimentally a conductivity threshold for carbon fibres with aspect ratios larger than 
100 embedded in an epoxy resin following the proportionality law n-’ and a critical 
conductivity exponent t = 3.1, close to the mean-field theory exponent t = 3 in place 
of t = 1.6 (Kirkpatrick 1976) for the random usual percolation, which could indicate 
a different universality class. 

We notice that our model is a discrete one, while the other works are concerned 
with continuous percolation; such an argument does not seem very relevant to the 
asymptotic behaviour and universality-class problems, as has been shown for the usual 
random percolation by means of experiments (Fug et  a1 1978) and Monte Carlo 
simulations (Haan and Zwanzig 1977, Gawlinski and Stanley 1981, Kertesz and Vicsek 
1982). Let us now consider these discrepancies, first with the previous 2~ simulation 
and the dimensionality arguments, then with the experiments. 

If we randomly disperse needles on a table, we get a system of sticks analogous 
to the Pike and Seager system; that is, the sticks can cross at any point. Geometrically, 
the system appears to be quasi two dimensional because the needles are very thin 
compared with the size of the area over which they are dispersed. However, from a 
topological point of view, the system is a 3~ assembly of elements piled up under the 
action of gravity and the statistics of contacts are not those of a real ZD assembly of 
solid elements for which the steric-exclusion conditions holds in the plane. Taking 
into account this physical restriction leads to a different percolation problem. Similar 
arguments can also be applied to the already recalled dimensional analysis by Carmona 
et a1 (1980). Strictly speaking, assuming zero thickness (or infinite aspect ratio) in a 
random system of sticks gives zero probability of the contacts! So in the development 
of the argument, even if scale transformation leaves the geometry unchanged, the 
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transformation of the contact conditions remains unclear. This argument then seems 
to be more relevant to sticks displayed on a lattice but without the excluded-volume 
condition. This leads us to emphasise the importance of this condition in the present 
calculations. 

In preliminary simulations performed on a 2~ square lattice, it was found that, 
due to this effect, large clusters of parallel sticks tend to form. This effect increases 
rapidly with the length of the 2~ sticks and results in a non-monotonous variation of the 
percolation threshold with n. p c  starts decreasing, goes to a minimum and then 
increases slowly for very large values of n. In a sense, one can say that a ‘nematic-like 
transition’ occurs before the ‘true percolative transition’ which moves toward larger 
p values. In 3~ systems, the densities at the threshold, at the same n, are lower and 
the number of accessible configurations is higher than in 2~ systems, so this effect 
should be less important. Nevertheless, for large values of n, we can expect a slower 
decrease of p c ( n )  than predicted as the present results seem to indicate. 

Coming back to the results obtained on composites, we must consider that according 
to the aspect ratio (up to 300) and the continuous nature of the problem (all positions 
and orientations are accessible), the excluded-volume effect might be smaller than for 
a lattice problem. But according to the cylindrical shape of the rods, which allows 
only for points contacts, the probability of such contacts would again be close to zero 
and no conduction would occur. In our opinion, this system is not a fully random 
one but the 3~ extension of the quasi-two-dimensional needles system described 
above. The ‘piling process’ is not performed here by gravity, but rather by the shear 
forces exerted inside the matrix, still fluid, during the preparation of the sample. 
These shear forces bring some elements into contact and keep them until the mixing 
process is stopped and the resin allowed to harden. If the mixing is homogeneous 
enough, we may expect percolative properties close to the ‘random piled’ system 
defined above in ZD case, that is a random assembly of elongated elements without 
excluded volume. It remains to be understood if such a system could behave relative 
to the critical properties like a Cayley tree and exhibit a conductivity exponent r = 3; 
this is still questionable and might be investigated carefully. 

Conclusion 

We have performed Monte Carlo simulation for the correlated 3~ site problem 
equivalent to an assembly of identical parallelepipedic conducting elements of length 
n lattice spacing displayed randomly on a lattice according to the steric exclusion 
condition. Accurate determinations of pc as a function of n are given, up to an aspect 
ratio equal to 15. From evaluation of the critical exponent Y, we infer that all these 
systems remain in the same universality class as the ordinary isotropic percolation. 

The discrepancies with former papers on similar systems seem to be related to the 
consideration of steric exclusion. Systematic analysis of the critical properties, both 
with and without this condition, would be suitable, as well as the extension to the 
case of oriented elements. Such work is currently in progress. 
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